Products of Peptides International, Inc.

Manufacturer:
PEPTIDES INTERNATIONAL, INC.

11621 ELECTRON DRIVE
LOUISVILLE, KY 40299
U.S.A.

PHONE: +1-502-266-8787
FAX: +1-502-267-1329
E-mail: peptides@pepnet.com

Distributor:
PEPTIDE INSTITUTE, INC.

4-1-2 INA, MINOH-SHI
OSAKA, 562-8686
JAPAN

PHONE: +81-(0)72-729-4121
FAX: +81-(0)72-729-4124
E-mail: info@peptide.co.jp
<table>
<thead>
<tr>
<th>Code</th>
<th>Compound</th>
<th>Price-Yen</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCB-1210-PI</td>
<td>CLEAR-Base Resin (HCl) 100-200 Mesh 2~10°C</td>
<td>5 g 15,000</td>
</tr>
<tr>
<td></td>
<td>HCl • NH₂—CLEAR</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>25 g 55,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100 g 199,000</td>
</tr>
<tr>
<td>RCX-1213-PI</td>
<td>CLEAR-Acid Resin 100-200 Mesh 2~10°C</td>
<td>5 g 27,000</td>
</tr>
<tr>
<td></td>
<td>Hydroxymethylphenoxyacetyl-norleucyl-CLEAR Resin</td>
<td></td>
</tr>
<tr>
<td>RCY-1250-PI</td>
<td>CLEAR-Amide Resin 100-200 Mesh 2~10°C</td>
<td>5 g 39,000</td>
</tr>
<tr>
<td></td>
<td>Rink-Amide-CLEAR Resin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-(2,4-Dimethoxyphenyl-Fmoc-aminomethylphenoxyacetyl-norleucyl-CLEAR Resin</td>
<td></td>
</tr>
<tr>
<td>CFA-1220-PI</td>
<td>Fmoc-Ala-CLEAR-Acid Resin 2~10°C</td>
<td>1 g 9,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 g 35,000</td>
</tr>
<tr>
<td>CFA-12015-PI</td>
<td>Fmoc-Ala-CLEAR-Amide Resin 2~10°C</td>
<td>1 g 9,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 g 35,000</td>
</tr>
<tr>
<td>CFX-1221-PI</td>
<td>Fmoc-β-Ala-CLEAR-Acid Resin 2~10°C</td>
<td>1 g 9,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 g 35,000</td>
</tr>
<tr>
<td>CFX-12016-PI</td>
<td>Fmoc-β-Ala-CLEAR-Amide Resin 2~10°C</td>
<td>1 g inquiry</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 g inquiry</td>
</tr>
<tr>
<td>CFR-1222-PI</td>
<td>Fmoc-Arg(Pbf)-CLEAR-Acid Resin 2~10°C</td>
<td>1 g inquiry</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 g inquiry</td>
</tr>
<tr>
<td>CFR-12017-PI</td>
<td>Fmoc-Arg(Pbf)-CLEAR-Amide Resin 2~10°C</td>
<td>1 g 17,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 g 49,000</td>
</tr>
<tr>
<td>Code</td>
<td>Compound</td>
<td>1 g</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>CFN-1223-PI</td>
<td>Fmoc-Asn(Trt)-CLEAR-Acid Resin</td>
<td>12,000</td>
</tr>
<tr>
<td>CFN-12018-PI</td>
<td>Fmoc-Asn(Trt)-CLEAR-Amide Resin</td>
<td>12,000</td>
</tr>
<tr>
<td>CFD-1224-PI</td>
<td>Fmoc-Asp(OBu')-CLEAR-Acid Resin</td>
<td>12,000</td>
</tr>
<tr>
<td>CFD-12019-PI</td>
<td>Fmoc-Asp(OBu')-CLEAR-Amide Resin</td>
<td>12,000</td>
</tr>
<tr>
<td>CFC-1225-PI</td>
<td>Fmoc-Cys(Bu')-CLEAR-Acid Resin</td>
<td>12,000</td>
</tr>
<tr>
<td>CFC-12020-PI</td>
<td>Fmoc-Cys(Trt)-CLEAR-Amide Resin</td>
<td>inquiry</td>
</tr>
<tr>
<td>CFC-1226-PI</td>
<td>Fmoc-Cys(Acm)-CLEAR-Acid Resin</td>
<td>12,000</td>
</tr>
<tr>
<td>CFC-1227-PI</td>
<td>Fmoc-Cys(Trt)-CLEAR-Acid Resin</td>
<td>12,000</td>
</tr>
<tr>
<td>CFC-12020-PI</td>
<td>Fmoc-Cys(Trt)-CLEAR-Amide Resin</td>
<td>inquiry</td>
</tr>
<tr>
<td>CFC-1228-PI</td>
<td>Fmoc-Cys(Xan)-CLEAR-Acid Resin</td>
<td>12,000</td>
</tr>
<tr>
<td>CFC-12025-PI</td>
<td>Fmoc-Cys(Xan)-CLEAR-Amide Resin</td>
<td>inquiry</td>
</tr>
<tr>
<td>CFC-1233-PI</td>
<td>Fmoc-Glu(Trt)-CLEAR-Acid Resin</td>
<td>12,000</td>
</tr>
<tr>
<td>CFC-12026-PI</td>
<td>Fmoc-Glu(Trt)-CLEAR-Amide Resin</td>
<td>inquiry</td>
</tr>
<tr>
<td>CFG-1233-PI</td>
<td>Fmoc-Gly-CLEAR-Acid Resin</td>
<td>9,000</td>
</tr>
<tr>
<td>CFG-12026-PI</td>
<td>Fmoc-Gly-CLEAR-Amide Resin</td>
<td>9,000</td>
</tr>
</tbody>
</table>

CLEAR products are protected under US Patents 5,910,554 and 5,656,707 granted to the Regents of the University of Minnesota.
<table>
<thead>
<tr>
<th>Code</th>
<th>Compound</th>
<th>Price:Yen</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFI-1236-PI</td>
<td>Fmoc-Ile-CLEAR-Acid Resin</td>
<td>1 g 9,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 g 35,000</td>
</tr>
<tr>
<td>CFI-12028-PI</td>
<td>Fmoc-Ile-CLEAR-Amide Resin</td>
<td>1 g 9,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 g 35,000</td>
</tr>
<tr>
<td>CFL-1237-PI</td>
<td>Fmoc-Leu-CLEAR-Acid Resin</td>
<td>1 g 9,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 g 35,000</td>
</tr>
<tr>
<td>CFL-12029-PI</td>
<td>Fmoc-Leu-CLEAR-Amide Resin</td>
<td>1 g inquiry</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 g inquiry</td>
</tr>
<tr>
<td>CFK-1238-PI</td>
<td>Fmoc-Lys(Boc)-CLEAR-Acid Resin</td>
<td>1 g 12,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 g 43,000</td>
</tr>
<tr>
<td>CFK-12030-PI</td>
<td>Fmoc-Lys(Boc)-CLEAR-Amide Resin</td>
<td>1 g 12,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 g 43,000</td>
</tr>
<tr>
<td>CFM-1240-PI</td>
<td>Fmoc-Met-CLEAR-Acid Resin</td>
<td>1 g 9,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 g 35,000</td>
</tr>
<tr>
<td>CFM-12032-PI</td>
<td>Fmoc-Met-CLEAR-Amide Resin</td>
<td>1 g inquiry</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 g inquiry</td>
</tr>
<tr>
<td>CFF-1241-PI</td>
<td>Fmoc-Phe-CLEAR-Acid Resin</td>
<td>1 g 9,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 g 35,000</td>
</tr>
<tr>
<td>CFF-12033-PI</td>
<td>Fmoc-Phe-CLEAR-Amide Resin</td>
<td>1 g inquiry</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 g inquiry</td>
</tr>
<tr>
<td>CFP-1242-PI</td>
<td>Fmoc-Pro-CLEAR-Acid Resin</td>
<td>1 g 9,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 g 35,000</td>
</tr>
<tr>
<td>CFP-12034-PI</td>
<td>Fmoc-Pro-CLEAR-Amide Resin</td>
<td>1 g 9,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 g 35,000</td>
</tr>
<tr>
<td>CFS-1243-PI</td>
<td>Fmoc-Ser(Bu')-CLEAR-Acid Resin</td>
<td>1 g inquiry</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 g inquiry</td>
</tr>
<tr>
<td>CFS-12035-PI</td>
<td>Fmoc-Ser(Bu')-CLEAR-Amide Resin</td>
<td>1 g inquiry</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 g inquiry</td>
</tr>
<tr>
<td>CFT-1245-PI</td>
<td>Fmoc-Thr(Bu')-CLEAR-Acid Resin</td>
<td>1 g 12,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 g 43,000</td>
</tr>
<tr>
<td>CFT-12036-PI</td>
<td>Fmoc-Thr(Bu')-CLEAR-Amide Resin</td>
<td>1 g 12,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 g 43,000</td>
</tr>
<tr>
<td>CFW-1246-PI</td>
<td>Fmoc-Trp-CLEAR-Acid Resin</td>
<td>1 g inquiry</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 g inquiry</td>
</tr>
<tr>
<td>CFW-12037-PI</td>
<td>Fmoc-Trp-CLEAR-Amide Resin</td>
<td>1 g 9,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 g 35,000</td>
</tr>
</tbody>
</table>

CLEAR products are protected under US Patents 5,910,554 and 5,656,707 granted to the Regents of the University of Minnesota.
<table>
<thead>
<tr>
<th>Code</th>
<th>Compound</th>
<th>Price: Yen</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFW-1247-PI</td>
<td>Fmoc-Trp(Boc)-CLEAR-Acid Resin</td>
<td>1 g: 17,000 5 g: 55,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2~10°C</td>
</tr>
<tr>
<td>CFW-12038-PI</td>
<td>Fmoc-Trp(Boc)-CLEAR-Amide Resin</td>
<td>1 g: 12,000 5 g: 43,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2~10°C</td>
</tr>
<tr>
<td>CFY-1248-PI</td>
<td>Fmoc-Tyr(Bu')-CLEAR-Acid Resin</td>
<td>1 g: 12,000 5 g: 43,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2~10°C</td>
</tr>
<tr>
<td>CFY-12039-PI</td>
<td>Fmoc-Tyr(Bu')-CLEAR-Amide Resin</td>
<td>1 g: 12,000 5 g: 43,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2~10°C</td>
</tr>
<tr>
<td>CFV-1249-PI</td>
<td>Fmoc-Val-CLEAR-Acid Resin</td>
<td>1 g: 9,000 5 g: 35,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2~10°C</td>
</tr>
<tr>
<td>CFV-12040-PI</td>
<td>Fmoc-Val-CLEAR-Amide Resin</td>
<td>1 g: inquiry 5 g: inquiry</td>
</tr>
</tbody>
</table>

CLEAR products are protected under US Patents 5,910,554 and 5,656,707 granted to the Regents of the University of Minnesota.
CLEAR RESINS

CLEAR resins (Cross-Linked Ethoxylate Acrylate Resins) were developed by George Barany and Maria Kempe at the University of Minnesota. These products retain the highly desirable solvation properties of polyethylene glycol (PEG) and PEG-linked products but can be handled with infinitely greater convenience. Unlike conventional liquid phase synthesis, developed by Bayer and Mutter in the 1970s and recently popularized by Janda in combinatorial synthesis, CLEAR resins are highly cross-linked. They are produced in a bead form employing a large-scale suspension polymerization process developed at Peptides International. The CLEAR particles swell in a wide range of solvents including water, methylene chloride, or DMF. They are also compatible with relatively non-polar solvents such as THF or dioxane. Synthesis can be performed on CLEAR in automated or manual synthesizers. Many other uses are possible with this exciting new product: In organic synthesis. In affinity chromatography. In enzyme immobilization. In trace analysis. In remote sensor applications. CLEAR may be the resin to consider in your research.

Swelling properties of CLEAR - Base Resin

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Bed volume (ml) of 1 g of resin</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH₂Cl₂</td>
<td>7.0</td>
</tr>
<tr>
<td>DMF</td>
<td>6.5</td>
</tr>
<tr>
<td>THF</td>
<td>7.0</td>
</tr>
<tr>
<td>MeOH</td>
<td>6.0</td>
</tr>
<tr>
<td>H₂O</td>
<td>5.5</td>
</tr>
</tbody>
</table>

References

<table>
<thead>
<tr>
<th>Code</th>
<th>Compound</th>
<th>Price: Yen</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAM-1440-PI</td>
<td>Aminomethylated Polystyrene Resin • HCl</td>
<td>5 g 7,800</td>
</tr>
<tr>
<td></td>
<td>Divinylbenzene 1%, 100-200 mesh</td>
<td>25 g 31,000</td>
</tr>
<tr>
<td></td>
<td>NH₂: 0.3-0.8 meq / g</td>
<td></td>
</tr>
<tr>
<td>RAM-1049-PI</td>
<td>Aminomethylated Polystyrene Resin • HCl</td>
<td>5 g 9,000</td>
</tr>
<tr>
<td></td>
<td>Divinylbenzene 1%, 200-400 mesh</td>
<td>25 g 36,000</td>
</tr>
<tr>
<td></td>
<td>NH₂: 0.3-0.8 meq / g</td>
<td></td>
</tr>
<tr>
<td>RAM-1051-PI</td>
<td>Aminomethylated Polystyrene Resin • HCl</td>
<td>5 g 22,600</td>
</tr>
<tr>
<td></td>
<td>Divinylbenzene 1%, 100-200 mesh</td>
<td>25 g 86,600</td>
</tr>
<tr>
<td></td>
<td>NH₂: 0.1-0.3 meq / g</td>
<td></td>
</tr>
<tr>
<td>RBH-1046-PI</td>
<td>Benzhydrylamine Resin • HCl (BHA)</td>
<td>5 g 11,000</td>
</tr>
<tr>
<td></td>
<td>Divinylbenzene 1%, 100-200 mesh</td>
<td>25 g 44,000</td>
</tr>
<tr>
<td></td>
<td>NH₂: 0.3-1.0 meq / g</td>
<td></td>
</tr>
<tr>
<td>RBH-1048-PI</td>
<td>Benzhydrylamine Resin • HCl (BHA)</td>
<td>5 g 11,000</td>
</tr>
<tr>
<td></td>
<td>Divinylbenzene 1%, 200-400 mesh</td>
<td>25 g 44,000</td>
</tr>
<tr>
<td></td>
<td>NH₂: 0.3-1.0 meq / g</td>
<td></td>
</tr>
<tr>
<td>RCM-1034-PI</td>
<td>Chloromethylated Polystyrene Resin</td>
<td>5 g 3,800</td>
</tr>
<tr>
<td></td>
<td>Divinylbenzene 1%, 100-200 mesh</td>
<td>25 g 13,000</td>
</tr>
<tr>
<td></td>
<td>Cl: 0.3-1.5 meq / g</td>
<td></td>
</tr>
<tr>
<td>RCM-1017-PI</td>
<td>Chloromethylated Polystyrene Resin</td>
<td>5 g 3,800</td>
</tr>
<tr>
<td></td>
<td>Divinylbenzene 2%, 200-400 mesh</td>
<td>25 g 13,000</td>
</tr>
<tr>
<td></td>
<td>Cl: 0.3-1.0 meq / g</td>
<td></td>
</tr>
<tr>
<td>RCM-1052-PI</td>
<td>Chloromethylated Polystyrene Resin</td>
<td>5 g 5,000</td>
</tr>
<tr>
<td></td>
<td>p-substituted, Divinylbenzene 1%, 100-200 mesh</td>
<td>25 g 15,800</td>
</tr>
<tr>
<td></td>
<td>Cl: 0.7-1.1 meq / g</td>
<td></td>
</tr>
<tr>
<td>RCM-1054-PI</td>
<td>Chloromethylated Polystyrene Resin</td>
<td>5 g 5,000</td>
</tr>
<tr>
<td></td>
<td>p-substituted, Divinylbenzene 1%, 200-400 mesh</td>
<td>25 g 15,800</td>
</tr>
<tr>
<td></td>
<td>Cl: 0.7-1.1 meq / g</td>
<td></td>
</tr>
<tr>
<td>RHM-1079-PI</td>
<td>HMBA-MBHA Resin</td>
<td>1 g 9,000</td>
</tr>
<tr>
<td></td>
<td>Hydroxymethylbenzoyl-MBHA Resin</td>
<td>5 g 35,000</td>
</tr>
<tr>
<td></td>
<td>Divinylbenzene 1%, 200-400 mesh</td>
<td></td>
</tr>
<tr>
<td>RHM-1077-PI</td>
<td>HMPB-MBHA Resin</td>
<td>1 g 9,000</td>
</tr>
<tr>
<td></td>
<td>4-(4-hydroxymethyl-3-methoxyphenoxy)- butyryl-MBHA Resin</td>
<td>5 g 35,000</td>
</tr>
<tr>
<td></td>
<td>Divinylbenzene 1%, 200-400 mesh</td>
<td></td>
</tr>
<tr>
<td>RFR-1069-PI</td>
<td>Hydroxymethyl Polystyrene Resin</td>
<td>5 g 10,000</td>
</tr>
<tr>
<td></td>
<td>Divinylbenzene 1%, 100-200 mesh</td>
<td>25 g 40,000</td>
</tr>
<tr>
<td>Code</td>
<td>Compound</td>
<td>Price: Yen</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>------------</td>
</tr>
<tr>
<td>RFR-1072-PI</td>
<td>Hydroxymethyl Polystyrene Resin</td>
<td>5 g</td>
</tr>
<tr>
<td></td>
<td>Divinylbenzene 2%, 200-400 mesh</td>
<td>25 g</td>
</tr>
<tr>
<td>RMB-1045-PI</td>
<td>p-Methyl-Benzhydrylamine Resin • HCl (MBHA)</td>
<td>5 g</td>
</tr>
<tr>
<td></td>
<td>Divinylbenzene 1%, 100-200 mesh</td>
<td>25 g</td>
</tr>
<tr>
<td></td>
<td>NH2: 0.3-1.0 meq / g</td>
<td></td>
</tr>
<tr>
<td>RMB-2100-PI</td>
<td>p-Methyl-Benzhydrylamine Resin • HCl (MBHA)</td>
<td>5 g</td>
</tr>
<tr>
<td></td>
<td>Divinylbenzene 1%, 200-400 mesh</td>
<td>25 g</td>
</tr>
<tr>
<td></td>
<td>NH2: 0.3-1.5 meq / g</td>
<td></td>
</tr>
<tr>
<td>RHM-1073-PI</td>
<td>Rink-Amide-AM Resin</td>
<td>5 g</td>
</tr>
<tr>
<td></td>
<td>Nle internal reference</td>
<td>25 g</td>
</tr>
<tr>
<td></td>
<td>4-(2',4'-Dimethoxyphenyl-Fmoc-Aminomethyl) Phenoxyacetyl-MBHA Resin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Divinylbenzene 1%, 200-400 mesh</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NH2: 0.3-0.6 meq / g</td>
<td></td>
</tr>
<tr>
<td>RFR-1063-PI</td>
<td>Rink-Amide-MBHA Resin</td>
<td>5 g</td>
</tr>
<tr>
<td></td>
<td>4-(2',4'-Dimethoxyphenyl-Fmoc-Aminomethyl) Phenoxyacetyl-MBHA Resin</td>
<td>25 g</td>
</tr>
<tr>
<td></td>
<td>Divinylbenzene 1%, 100-200 mesh</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NH2: 0.3-0.6 meq / g</td>
<td></td>
</tr>
<tr>
<td>RFR-1067-PI</td>
<td>Rink-Amide-MBHA Resin</td>
<td>5 g</td>
</tr>
<tr>
<td></td>
<td>Divinylbenzene 1%, 200-400 mesh</td>
<td>25 g</td>
</tr>
<tr>
<td></td>
<td>NH2: 0.3-0.6 meq / g</td>
<td></td>
</tr>
<tr>
<td>RWN-1399-PI</td>
<td>Wang Resin</td>
<td>5 g</td>
</tr>
<tr>
<td></td>
<td>p-Alkoxybenzyl Alcohol Resin</td>
<td>25 g</td>
</tr>
<tr>
<td>RWN-1398-PI</td>
<td>Wang Resin</td>
<td>5 g</td>
</tr>
<tr>
<td></td>
<td>p-Alkoxybenzyl Alcohol Resin</td>
<td>25 g</td>
</tr>
<tr>
<td>RCT-1056-PI</td>
<td>2-Chlorotrityl Chloride Resin</td>
<td>5 g</td>
</tr>
<tr>
<td></td>
<td>Divinylbenzene 1%, 100-200 mesh</td>
<td>25 g</td>
</tr>
<tr>
<td>RCT-1083-PI</td>
<td>2-Chlorotrityl Chloride Resin</td>
<td>5 g</td>
</tr>
<tr>
<td></td>
<td>Divinylbenzene 1%, 200-400 mesh</td>
<td>25 g</td>
</tr>
<tr>
<td>Code</td>
<td>Compound</td>
<td>Price: Yen</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>------------</td>
</tr>
<tr>
<td>PUT-3639-PI</td>
<td>Urotensin II Agonist and Antagonist</td>
<td>1 mg</td>
</tr>
<tr>
<td></td>
<td>Urantide™ [Pen⁵, o-Trp⁷, Orn⁸]-Urotensin II (Human, 4-11)</td>
<td>25,000</td>
</tr>
<tr>
<td></td>
<td>Asp-Pen-Phe-o-Trp-Orn-Tyr-Cys-Val</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Disulfide bond between Pen²-Cys⁷)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Pen: Penicillamine)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(M.W. 1075.3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C₅₁H₆₆N₁₀O₁₂S₂</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Potent Urotensin II Receptor Antagonist</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• This product is sold under exclusive licence granted to Peptides International, Inc.</td>
<td></td>
</tr>
</tbody>
</table>

PUT-3640-PI	**Asp-Pen-Phe-Trp-Lys-Tyr-Cys-Val**	1 mg
	[Pen⁵]-Urotensin II (Human, 4-11)	25,000
	Asp-Pen-Phe-Trp-Lys-Tyr-Cys-Val	
	(Disulfide bond between Pen²-Cys⁷)	
	(Pen: Penicillamine)	
	(M.W. 1089.3)	
	C₅₂H₆₈N₁₀O₁₂S₂	
	Potent Urotensin II Receptor Agonist	
	• This product is sold under exclusive licence granted to Peptides International, Inc.	

IDP-3655-PI	**DPP II Inhibitor**	5 mg
	Dab-Pip	7,000
	1-2,4-Diaminobutyric acid piperidide	
	(M.W. 185.27)	
	C₉H₁₉N₃O	
	Selective Inhibitor for Dipeptidyl Peptidase II (DPP II)	
***** MMP Inhibitors *****

<table>
<thead>
<tr>
<th>Code</th>
<th>Compound</th>
<th>Price/Yen</th>
</tr>
</thead>
</table>
| INH-3850-PI | TAPI-0
HONHCOCH₂(CH₂-CH(CH₃)₂)CO-Nal-Ala-NH₂
N-(R)-(2-(Hydroxyaminocarbonyl)methyl)-4-methylpentanoyl-L-3-(2'-naphthyl)alanin-L-alanine amide
(M.W. 456.53)
C₂₄H₃₂N₄O₅ | Vial 1 mg 25,000 |

<table>
<thead>
<tr>
<th>Code</th>
<th>Compound</th>
<th>Price/Yen</th>
</tr>
</thead>
</table>
| INH-3855-PI | TAPI-1
HONHCOCH₂(CH₂-CH(CH₃)₂)CO-Nal-Ala-NHC₂H₂NH₂
N-(R)-(2-(Hydroxyaminocarbonyl)methyl)-4-methylpentanoyl-L-3-(2'-naphthyl)alanin-L-alanine 2-aminoethyl amide
(M.W. 499.60)
C₂₆H₃₇N₅O₅ | Vial 1 mg 25,000 |

<table>
<thead>
<tr>
<th>Code</th>
<th>Compound</th>
<th>Price/Yen</th>
</tr>
</thead>
</table>
| INH-3852-PI | TAPI-2
HONHCOCH₂(CH₂-CH(CH₃)₂)CO-L-Leu-Ala-NHC₂H₂NH₂
N-(R)-(2-(Hydroxyaminocarbonyl)methyl)-4-methylpentanoyl-L-L-3-(2'-naphthyl)alanin-L-alanine 2-aminoethyl amide
(M.W. 415.53)
C₁₉H₃₇N₅O₅ | Vial 1 mg 25,000 |

<table>
<thead>
<tr>
<th>Code</th>
<th>Compound</th>
<th>Price: Yen</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDP-3818-PI</td>
<td>Abz-Leu-Ala-Gln-Ala-Val-Arg-Ser-Ser-Arg-Asp(Dnp)-NH₂</td>
<td>15,000</td>
</tr>
</tbody>
</table>

2-Aminobenzoyl-L-leucyl-L-alanyl-L-glutaminyl-L-alanyl-L-valyl-L-arginyl-L-seryl-L-seryl-L-seryl-L-arginyl-\(\text{N}\beta-(2,4-dinitrophenyl)-L-2,3-diaminopropionamide\)

(M.W. 1444.5) \(\text{C}_{59}\text{H}_{93}\text{N}_{23}\text{O}_{20} \)

Fluorescence-Quenching Substrate for ADAM17/
Tumor Necrosis Factor-α Converting Enzyme

Amino Acid Derivatives (mini-PEG™)

<table>
<thead>
<tr>
<th>Code</th>
<th>Compound</th>
<th>Price: Yen</th>
<th>1 g</th>
</tr>
</thead>
<tbody>
<tr>
<td>BXX-5519-PI</td>
<td>Boc-8-Amino-3,6-Dioxoactanoic Acid • DCHA
8-(Boc-amino)-3,6-dioxoaactanoic acid • DCHA Boc-mini-PEG™ / Boc-AEEA
8-t-Butyloxycarbonylamino-3,6-dioxoaactanoic acid dicyclohexylamine
(M.W. 263.29 • 181.32) C₁₁H₂₁NO₆ • C₁₂H₂₃N</td>
<td>25,000</td>
<td></td>
</tr>
<tr>
<td>BXX-5523-PI</td>
<td>Boc-11-Amino-3,6,9-Trioxaundecanoic Acid • DCHA
11-(Boc-amino)-3,6,9-trioxaundecanoic acid • DCHA Boc-mini-PEG-3™ / Boc-AEEEA
11-t-Butyloxycarbonylamino-3,6,9-trioxaundecanoic acid dicyclohexylamine
(M.W. 307.34 • 181.32) C₁₃H₂₅NO₇ • C₁₂H₂₃N</td>
<td>30,000</td>
<td></td>
</tr>
<tr>
<td>FXX-5521-PI</td>
<td>Fmoc-8-Amino-3,6-Dioxoactanoic Acid
8-(Fmoc-amino)-3,6-dioxoactanoic acid Fmoc-mini-PEG™ / Fmoc-AEEA
8-Fluorenylmethoxycarbonylamino-3,6-dioxoaactanoic acid
(M.W. 385.41) C₂₁H₂₃NO₆</td>
<td>19,800</td>
<td></td>
</tr>
<tr>
<td>FXX-5524-PI</td>
<td>Fmoc-11-Amino-3,6,9-Trioxaundecanoic Acid (Syrup)
11-(Fmoc-amino)-3,6,9-trioxaundecanoic acid Fmoc-mini-PEG-3™ / Fmoc-AEEEA
11-Fluorenylmethoxycarbonylamino-3,6,9-trioxaundecanoic acid
(M.W. 429.47) C₂₃H₂₇NO₇</td>
<td>35,000</td>
<td></td>
</tr>
</tbody>
</table>